domingo, 30 de mayo de 2010

Sees Ideas Made Into Products

Sees Ideas Made Into Products

Materials science is an applied science concerned with the relationship between the structure and properties of materials. Chemists who work in the field study how different combinations of molecules and materials result in different properties. They use this knowledge to synthesize new materials with special properties. Eduardo Kamenetzky, a senior research scientist at Cytec Industries, explains, "The central concept of materials science is relating the microstructure of a material to the properties you want it to have. By working with the microstructure, you can tailor the central properties of that material." Materials scientists are generally employed by industry or in laboratories where the focus is on developing product-related technologies. But, not all ideas become products and, as a result, possessing the quality of persistence is helpful in this field. "Persistence is important," says Bob Haddon at AT&T Bell Laboratories. "You have to have a high tolerance for frustration because 99% of your experiments do not work." Barry Speronello, an engineering fellow at Englehard Corporation, agrees, "There are a dozen bad ideas for each fair idea, and a dozen fair ideas for each good idea. You sort out which ideas are worth pursuing. Most ideas break down when you look at the economics." But when an idea succeeds, it's very gratifying. This is often what materials scientists say they enjoy most about their work -- seeing an idea through from the basic microstructure research to the manufacture and commercialization of a product made of the developed material.

Unites Many Disciplines

Materials science is one of the hottest career areas in science, but to think of it as a single career is misleading. Perhaps one reason for its popularity is that it unites applications from many scientific disciplines that contribute to the development of new materials. Chemists play a predominant role in materials science because chemistry provides information about the structure and composition of materials as well as the processes to apply and synthesize them. Materials science overlaps to a large extent with polymer science resulting in many new polymeric materials being developed in this century. Materials scientists are employed by companies whose products are made of metals, ceramics, and rubber, for example; they work in the coatings (developing new varieties of paint) and biologics industries (designing materials that are compatible with human tissues for prosthetics and implants). Other applications of materials science include studies of superconducting materials, graphite materials, integrated-circuit chips, and fuel cells. Materials science is so interdisciplinary that preparation in a number of related areas is important. "It is good to have a specialization," says Darrel Tenney, chief of the Materials Division at NASA's Langley Research Center. "But you also need to be cross-trained in a related discipline. This has been important for many years, but it is becoming critical." Good verbal and written communication skills are required since most materials scientists work in teams with people in other disciplines.

Is About Business

Many materials scientists say they were drawn to the field because they are naturally curious and always wanted to know what things were made of. "In industry, though, it is not just a question of being curious, but what you are being curious about and how it will benefit the company you work for," says Bruce Scott, manager of chemistry and materials science at IBM's T. J. Watson Research Center. The field is becoming more business-driven all the time. "When I started in pre-ceramic polymers in the 1980s, people were making pre-ceramic polymers just to make them," says Gregg Zank, a senior research specialist at Dow Corning. "Now, research is much more focused so we look for specific functionalities and applications in materials." Scott says, "Aside from universities and some government labs, there are few places that still do exploratory research." Because the focus is on business, materials scientists say the emphasis of their work is on how to make materials for the marketplace more economically. Some materials scientists are employed by academia and government; however, most are employed by industry.

Offers Good Employment Opportunities

The strong link of materials science to products in the marketplace means that more job opportunities are to be found in this area than in other areas of science, resulting in a positive future job outlook. Materials science's progress is pointing the way toward improved personal economic health and a better way of life. Applications for new materials and modifications of existing materials are expected to keep the demand for trained materials scientists growing. A materials scientist's background is varied. Although a materials science degree may open many doors, it may be safer for students to avoid early specialization in their course work. Materials scientists indicate that students should learn the basic sciences. This broad base is often obtained through degrees in physics, engineering, or chemistry. Once armed with a broad base of scientific knowledge, one can focus on more specific skills that are or will be in demand by industry.

Leah Ann Peavey

Synthetic Rubber

Leah Ann Peavey, a group leader for product development, works for synthetic rubber manufacturer DSM Copolymer, Inc. "Our customers do not sell raw rubber," she explains. "They take the base rubber and compound it, turning it into a usable material." This means mixing the raw rubber with various other materials such as carbon black, extender oil, curatives, and fillers. "Materials science," she says, "is basically the processing of different compounds."
The material Peavey works most closely with is ethylene-propylene-diene terpolymer, or EPDM, which is used in roofing materials and in the auto industry for sealing components, rubber gaskets, and hoses. "Once you develop the formulation for a basic rubber polymer, you then have to examine how that polymer will perform as a product," she says. Factors such as molecular weight, molecular weight distribution, and ethylene content all make a difference in how the material can be processed.
"Another group in research and development handles polymerization. They make all sorts of variations in the base polymer," she says. "It's my job to assess the effect these variations will have on product performance." Part of this work includes evaluating how the material will process in machinery such as extruders and injection molders as well as in different curing applications like microwave or hot-air ovens. With her knowledge of polymer processing, Peavey is often the customer's resource for advice on how to formulate and process EPDM for a specific application.

Barry Speronello

Catalysts

"I always tinkered as a child," says Barry Speronello, an engineering fellow at Englehard Corporation. "I studied ceramic science and engineering. Now I work with catalysts. A person with materials science training can do a lot in catalysis, more than I was aware. Catalytic materials are overwhelmingly ceramic," he says.
"I really like the breadth of activities in which I get to participate. Some chemists work within a very narrow range, but with greater depth than I will ever have. I think I'm well suited for what I do because I like to take as broad a perspective as possible."
In his job, Speronello says he can conceive of a concept and work on that concept completely through commercial sales. "I determine the practicality of the concept and work with the manufacturing group to develop a manufacturing process. I work with customers and let them know how the product will enable them to do what they need to do better, faster, and cheaper. This way, I have the opportunity to shepherd my original conception through its useful life."

Bruce Scott

Films for the Semiconductor Industry

The electronics industry relies on highly specialized materials to make the components it uses in telephones, computers, and other electronic devices. Silicon is a key material in most of these components.
Bruce Scott, manager of chemistry and materials science at IBM's T. J. Watson Research Center, has spent part of his career studying the chemistry of deposition of very thin films of silicon. As a result of these studies, Scott has improved the chemical process for the fabrication of devices that are at the core of IBM's business.
Scott explains that the films are made by allowing monosilane gas to decompose on a substrate, usually also composed of a crystal form of silicon. "We spent a lot of time researching the gas phase and surface reactions that lead to the deposition of films," Scott says. "Traditionally, films are deposited at high temperatures, near 1000 C, from chlorosilanes. We studied these processes in detail to see if the same films could be formed at a lower temperature. Low-temperature deposition is important because films with sharp electrical characteristics can be made, leading to very high-speed computer circuits. This emphasis led to the development of a new process for the lower-temperature deposition of silicon films. Because we understood the chemistry and how the gas behaves, we were able to develop a completely new process technology that is now being used to manufacture devices. It is a good example of the direct transfer of basic science results to technology."

Gregg Zank

Ceramics

Gregg Zank, a senior research specialist in the advanced ceramics program at Dow Corning, has a hand in every stage of making a ceramic part. "We make molecular materials, pre-ceramic polymers, and ceramic parts for a wide range of applications," he says. One aspect of his job is to design pre-ceramic polymers that can be used in conjunction with other materials to make the highest quality and most cost-effective part. "An important aspect of this work is being able to relate the chemistry in the polymer to how it will affect the properties of the ceramic," he says.
"There is a real emphasis today on making ceramic parts that are cheaper and easier to manufacture," he says. Zank cites, as an example, parts that have a certain shape or detail that is vital to their function. "These are parts that are not just tubes but that need to have grooves and flanges on them. Being able to build a ceramic part in this kind of detail before it is sintered is the most economical way to make it," he says.
To make a ceramic part, a materials scientist blends the polymer with a ceramic powder, and this blended material is then molded in a die that incorporates the desired detail incorporate the details.

Darrel Tenney

Materials for Aerospace

One of the U.S. National Aeronautics and Space Administration's (NASA) functions is to make sure that lightweight high-performance materials are available for today's aircraft needs. Darrel Tenney, chief of the Materials Division at NASA's Langley Research Center, says, "We trade off and optimize materials on the basis of an aircraft's needs--how many passengers it will carry, how many miles it needs to go, and what stresses it will endure. Research is focused on development of performance polymer matrix composites, light alloys, and refractory matrix composites."
But Tenney's role is not just to look at the materials needs for today. The most exciting part of his work is to evaluate the advanced technology that may be important in the future. One new area is the field of computational materials. Taking their cue from the mathematical modeling used in the pharmaceutical industry to understand molecules and how they interact with the body, researchers are using computers to guide their research in high-molecular-weight polymers. "We will be making materials by design," he says, "deciding ahead of time what characteristics we want the material to have and then going into the lab to make that material." Tenney says computational skills combined with chemistry promises tremendous opportunity for the future.

Bob Haddon

Superconductivity

Bob Haddon develops new electronic materials at AT&T Bell Laboratories. He says that one of the most exciting moments in his career was his 1991 discovery of superconductivity in alkali metal C60, or buckminsterfullerene. "When you combine C60 with an alkali metal, it becomes a superconductor," he explains. Haddon did not expect AT&T to find an application for his discovery for a while, so he focused much of his research on finding out what the properties of C60 can teach us about superconductivity in general. "Understanding the materials already available gives us information about the materials we hope to make in the future," he says.
The science of electronic materials has been a very successful field, according to Haddon. "Silicon is almost a nightmare for people working on new electronic materials because it is so good." Still, he believes it is an exciting time to explore the potential of materials other than silicon. "Organics have not had a large penetration into the market. They've always been something of a sidelight in the industry. A breakthrough in the science of organics will prove their worth in the marketplace." Haddon says that at Bell Labs, there is good support for basic research. "The hope is that there will be an application for every piece of basic research."

Work Description

Materials science covers a broad range of sciences. Materials scientists do fundamental research on the chemical properties of materials, develop new materials, and modify formulations of existing materials to suit new applications.

Work Environment

Some materials scientists say one of the most satisfying aspects of their work is being involved in a project from the materials' initial conception through its manufacture and marketing. Much of their work is performed in the lab, but they also work with engineers and processing specialists in pilot plants or manufacturing facilities. After a material is sold, materials scientists often help customers tailor the material to suit their needs.

Places of Employment

Most materials scientists are employed in industry where products are made; some are employed by government and academia. Many work in the electronic and computer industry.

Personal Characteristics

Most materials scientists describe themselves as curiosity-driven. They say they have always been interested in knowing what things are made of, such as the plastic in the cup they are drinking from or the components of a composite material. They also express a strong interest in engineering and structures. Most describe themselves as generalists; some say they feel their knowledge base is "a mile wide, but an inch deep."

Education and Training

The materials science field is made up of people with various educational backgrounds. Some companies are more interested in hiring Ph.D. candidates. However, most projects in materials science are team efforts, and a team can include technicians, engineers, physicists, and materials scientists with B.S. or M.S. degrees, as well as Ph.D. chemists. Students are encouraged to give thoughtful consideration to the type of work they want to do and then investigate the level of education that is required. There are about 20 degree programs in materials science in the United States, but most materials scientists recommend training in a more specific discipline, such as inorganic synthesis and organic chemistry, or specific materials science such as ceramic engineering. They advise, however, against specializing too soon. In addition to their scientific training, materials scientists stress the importance of understanding, and the ability to apply basic statistical concepts.

Job Outlook

Materials scientists say the current job outlook continues to be good because the demand for new materials and modifications of existing materials is ongoing. Some caution, however, that materials science may become a victim of its own success. Since much of the technology developed in the past decade was so good, the growth curve for the future will flatten out. Certain areas within materials science, such as electronics, are already seeing flattening in employment growth.

Salary Information

To find out what a person in this type of position earns in your area of the country, please refer to the ACS Salary Comparator. Use of the ACS Salary Comparator is a member-only benefit. General information about salaries in chemical professions can be obtained through published survey results.

For More Information

Materials science spans so many different disciplines that people who work in this field tend to be allied with the associations or university laboratories that share their specialization. Students are urged to contact associations for ceramic manufacturers, synthetic rubber makers, paints and coatings manufacturers, and plastics makers to find out more about each of these areas and the opportunities that exist for materials chemists in each of them.

What You Can Do Now

Materials science jobs are concentrated in industry. Because of this, students investigate the corporate environment early on in their scientific career to determine if this work atmosphere suits them. Students also need to focus on their career goals to determine if they prefer a more specialized field, or whether the breadth and interdisciplinary nature of materials science will satisfy them.

Leonard A Quintero C
CAF
http://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_ARTICLEMAIN&node_id=1188&content_id=CTP_003394&use_sec=true&sec_url_var=region1&__uuid=7c97f7fb-10ca-407f-99f0-26cbbc7864bf




Sees Ideas Made Into Products

Sees Ideas Made Into Products

Materials science is an applied science concerned with the relationship between the structure and properties of materials. Chemists who work in the field study how different combinations of molecules and materials result in different properties. They use this knowledge to synthesize new materials with special properties. Eduardo Kamenetzky, a senior research scientist at Cytec Industries, explains, "The central concept of materials science is relating the microstructure of a material to the properties you want it to have. By working with the microstructure, you can tailor the central properties of that material." Materials scientists are generally employed by industry or in laboratories where the focus is on developing product-related technologies. But, not all ideas become products and, as a result, possessing the quality of persistence is helpful in this field. "Persistence is important," says Bob Haddon at AT&T Bell Laboratories. "You have to have a high tolerance for frustration because 99% of your experiments do not work." Barry Speronello, an engineering fellow at Englehard Corporation, agrees, "There are a dozen bad ideas for each fair idea, and a dozen fair ideas for each good idea. You sort out which ideas are worth pursuing. Most ideas break down when you look at the economics." But when an idea succeeds, it's very gratifying. This is often what materials scientists say they enjoy most about their work -- seeing an idea through from the basic microstructure research to the manufacture and commercialization of a product made of the developed material.

Unites Many Disciplines

Materials science is one of the hottest career areas in science, but to think of it as a single career is misleading. Perhaps one reason for its popularity is that it unites applications from many scientific disciplines that contribute to the development of new materials. Chemists play a predominant role in materials science because chemistry provides information about the structure and composition of materials as well as the processes to apply and synthesize them. Materials science overlaps to a large extent with polymer science resulting in many new polymeric materials being developed in this century. Materials scientists are employed by companies whose products are made of metals, ceramics, and rubber, for example; they work in the coatings (developing new varieties of paint) and biologics industries (designing materials that are compatible with human tissues for prosthetics and implants). Other applications of materials science include studies of superconducting materials, graphite materials, integrated-circuit chips, and fuel cells. Materials science is so interdisciplinary that preparation in a number of related areas is important. "It is good to have a specialization," says Darrel Tenney, chief of the Materials Division at NASA's Langley Research Center. "But you also need to be cross-trained in a related discipline. This has been important for many years, but it is becoming critical." Good verbal and written communication skills are required since most materials scientists work in teams with people in other disciplines.

Is About Business

Many materials scientists say they were drawn to the field because they are naturally curious and always wanted to know what things were made of. "In industry, though, it is not just a question of being curious, but what you are being curious about and how it will benefit the company you work for," says Bruce Scott, manager of chemistry and materials science at IBM's T. J. Watson Research Center. The field is becoming more business-driven all the time. "When I started in pre-ceramic polymers in the 1980s, people were making pre-ceramic polymers just to make them," says Gregg Zank, a senior research specialist at Dow Corning. "Now, research is much more focused so we look for specific functionalities and applications in materials." Scott says, "Aside from universities and some government labs, there are few places that still do exploratory research." Because the focus is on business, materials scientists say the emphasis of their work is on how to make materials for the marketplace more economically. Some materials scientists are employed by academia and government; however, most are employed by industry.

Offers Good Employment Opportunities

The strong link of materials science to products in the marketplace means that more job opportunities are to be found in this area than in other areas of science, resulting in a positive future job outlook. Materials science's progress is pointing the way toward improved personal economic health and a better way of life. Applications for new materials and modifications of existing materials are expected to keep the demand for trained materials scientists growing. A materials scientist's background is varied. Although a materials science degree may open many doors, it may be safer for students to avoid early specialization in their course work. Materials scientists indicate that students should learn the basic sciences. This broad base is often obtained through degrees in physics, engineering, or chemistry. Once armed with a broad base of scientific knowledge, one can focus on more specific skills that are or will be in demand by industry.

Leah Ann Peavey

Synthetic Rubber

Leah Ann Peavey, a group leader for product development, works for synthetic rubber manufacturer DSM Copolymer, Inc. "Our customers do not sell raw rubber," she explains. "They take the base rubber and compound it, turning it into a usable material." This means mixing the raw rubber with various other materials such as carbon black, extender oil, curatives, and fillers. "Materials science," she says, "is basically the processing of different compounds."
The material Peavey works most closely with is ethylene-propylene-diene terpolymer, or EPDM, which is used in roofing materials and in the auto industry for sealing components, rubber gaskets, and hoses. "Once you develop the formulation for a basic rubber polymer, you then have to examine how that polymer will perform as a product," she says. Factors such as molecular weight, molecular weight distribution, and ethylene content all make a difference in how the material can be processed.
"Another group in research and development handles polymerization. They make all sorts of variations in the base polymer," she says. "It's my job to assess the effect these variations will have on product performance." Part of this work includes evaluating how the material will process in machinery such as extruders and injection molders as well as in different curing applications like microwave or hot-air ovens. With her knowledge of polymer processing, Peavey is often the customer's resource for advice on how to formulate and process EPDM for a specific application.

Barry Speronello

Catalysts

"I always tinkered as a child," says Barry Speronello, an engineering fellow at Englehard Corporation. "I studied ceramic science and engineering. Now I work with catalysts. A person with materials science training can do a lot in catalysis, more than I was aware. Catalytic materials are overwhelmingly ceramic," he says.
"I really like the breadth of activities in which I get to participate. Some chemists work within a very narrow range, but with greater depth than I will ever have. I think I'm well suited for what I do because I like to take as broad a perspective as possible."
In his job, Speronello says he can conceive of a concept and work on that concept completely through commercial sales. "I determine the practicality of the concept and work with the manufacturing group to develop a manufacturing process. I work with customers and let them know how the product will enable them to do what they need to do better, faster, and cheaper. This way, I have the opportunity to shepherd my original conception through its useful life."

Bruce Scott

Films for the Semiconductor Industry

The electronics industry relies on highly specialized materials to make the components it uses in telephones, computers, and other electronic devices. Silicon is a key material in most of these components.
Bruce Scott, manager of chemistry and materials science at IBM's T. J. Watson Research Center, has spent part of his career studying the chemistry of deposition of very thin films of silicon. As a result of these studies, Scott has improved the chemical process for the fabrication of devices that are at the core of IBM's business.
Scott explains that the films are made by allowing monosilane gas to decompose on a substrate, usually also composed of a crystal form of silicon. "We spent a lot of time researching the gas phase and surface reactions that lead to the deposition of films," Scott says. "Traditionally, films are deposited at high temperatures, near 1000 C, from chlorosilanes. We studied these processes in detail to see if the same films could be formed at a lower temperature. Low-temperature deposition is important because films with sharp electrical characteristics can be made, leading to very high-speed computer circuits. This emphasis led to the development of a new process for the lower-temperature deposition of silicon films. Because we understood the chemistry and how the gas behaves, we were able to develop a completely new process technology that is now being used to manufacture devices. It is a good example of the direct transfer of basic science results to technology."

Gregg Zank

Ceramics

Gregg Zank, a senior research specialist in the advanced ceramics program at Dow Corning, has a hand in every stage of making a ceramic part. "We make molecular materials, pre-ceramic polymers, and ceramic parts for a wide range of applications," he says. One aspect of his job is to design pre-ceramic polymers that can be used in conjunction with other materials to make the highest quality and most cost-effective part. "An important aspect of this work is being able to relate the chemistry in the polymer to how it will affect the properties of the ceramic," he says.
"There is a real emphasis today on making ceramic parts that are cheaper and easier to manufacture," he says. Zank cites, as an example, parts that have a certain shape or detail that is vital to their function. "These are parts that are not just tubes but that need to have grooves and flanges on them. Being able to build a ceramic part in this kind of detail before it is sintered is the most economical way to make it," he says.
To make a ceramic part, a materials scientist blends the polymer with a ceramic powder, and this blended material is then molded in a die that incorporates the desired detail incorporate the details.

Darrel Tenney

Materials for Aerospace

One of the U.S. National Aeronautics and Space Administration's (NASA) functions is to make sure that lightweight high-performance materials are available for today's aircraft needs. Darrel Tenney, chief of the Materials Division at NASA's Langley Research Center, says, "We trade off and optimize materials on the basis of an aircraft's needs--how many passengers it will carry, how many miles it needs to go, and what stresses it will endure. Research is focused on development of performance polymer matrix composites, light alloys, and refractory matrix composites."
But Tenney's role is not just to look at the materials needs for today. The most exciting part of his work is to evaluate the advanced technology that may be important in the future. One new area is the field of computational materials. Taking their cue from the mathematical modeling used in the pharmaceutical industry to understand molecules and how they interact with the body, researchers are using computers to guide their research in high-molecular-weight polymers. "We will be making materials by design," he says, "deciding ahead of time what characteristics we want the material to have and then going into the lab to make that material." Tenney says computational skills combined with chemistry promises tremendous opportunity for the future.

Bob Haddon

Superconductivity

Bob Haddon develops new electronic materials at AT&T Bell Laboratories. He says that one of the most exciting moments in his career was his 1991 discovery of superconductivity in alkali metal C60, or buckminsterfullerene. "When you combine C60 with an alkali metal, it becomes a superconductor," he explains. Haddon did not expect AT&T to find an application for his discovery for a while, so he focused much of his research on finding out what the properties of C60 can teach us about superconductivity in general. "Understanding the materials already available gives us information about the materials we hope to make in the future," he says.
The science of electronic materials has been a very successful field, according to Haddon. "Silicon is almost a nightmare for people working on new electronic materials because it is so good." Still, he believes it is an exciting time to explore the potential of materials other than silicon. "Organics have not had a large penetration into the market. They've always been something of a sidelight in the industry. A breakthrough in the science of organics will prove their worth in the marketplace." Haddon says that at Bell Labs, there is good support for basic research. "The hope is that there will be an application for every piece of basic research."

Work Description

Materials science covers a broad range of sciences. Materials scientists do fundamental research on the chemical properties of materials, develop new materials, and modify formulations of existing materials to suit new applications.

Work Environment

Some materials scientists say one of the most satisfying aspects of their work is being involved in a project from the materials' initial conception through its manufacture and marketing. Much of their work is performed in the lab, but they also work with engineers and processing specialists in pilot plants or manufacturing facilities. After a material is sold, materials scientists often help customers tailor the material to suit their needs.

Places of Employment

Most materials scientists are employed in industry where products are made; some are employed by government and academia. Many work in the electronic and computer industry.

Personal Characteristics

Most materials scientists describe themselves as curiosity-driven. They say they have always been interested in knowing what things are made of, such as the plastic in the cup they are drinking from or the components of a composite material. They also express a strong interest in engineering and structures. Most describe themselves as generalists; some say they feel their knowledge base is "a mile wide, but an inch deep."

Education and Training

The materials science field is made up of people with various educational backgrounds. Some companies are more interested in hiring Ph.D. candidates. However, most projects in materials science are team efforts, and a team can include technicians, engineers, physicists, and materials scientists with B.S. or M.S. degrees, as well as Ph.D. chemists. Students are encouraged to give thoughtful consideration to the type of work they want to do and then investigate the level of education that is required. There are about 20 degree programs in materials science in the United States, but most materials scientists recommend training in a more specific discipline, such as inorganic synthesis and organic chemistry, or specific materials science such as ceramic engineering. They advise, however, against specializing too soon. In addition to their scientific training, materials scientists stress the importance of understanding, and the ability to apply basic statistical concepts.

Job Outlook

Materials scientists say the current job outlook continues to be good because the demand for new materials and modifications of existing materials is ongoing. Some caution, however, that materials science may become a victim of its own success. Since much of the technology developed in the past decade was so good, the growth curve for the future will flatten out. Certain areas within materials science, such as electronics, are already seeing flattening in employment growth.

Salary Information

To find out what a person in this type of position earns in your area of the country, please refer to the ACS Salary Comparator. Use of the ACS Salary Comparator is a member-only benefit. General information about salaries in chemical professions can be obtained through published survey results.

For More Information

Materials science spans so many different disciplines that people who work in this field tend to be allied with the associations or university laboratories that share their specialization. Students are urged to contact associations for ceramic manufacturers, synthetic rubber makers, paints and coatings manufacturers, and plastics makers to find out more about each of these areas and the opportunities that exist for materials chemists in each of them.

What You Can Do Now

Materials science jobs are concentrated in industry. Because of this, students investigate the corporate environment early on in their scientific career to determine if this work atmosphere suits them. Students also need to focus on their career goals to determine if they prefer a more specialized field, or whether the breadth and interdisciplinary nature of materials science will satisfy them.


Materiales Modernos


Materiales Modernos



Desde los principios de la era moderna de la química en el siglo XIX, uno de los objetivos importantes de las investigaciones en química ha sido el descubrimiento y desarrollo de materiales con propiedades útiles. Los químicos han inventado sustancias y también formas de procesar materiales naturales para elaborar fibras, películas, recubrimientos, adhesivos y sustancias con propiedades eléctricas, magnéticas u ópticas especiales. Hoy en día hemos ingresado en una nueva era en la que los avances de la tecnología dependen más que nunca del descubrimiento y desarrollo de nuevos materiales útiles. He aquí algunos ejemplos de cómo tales materiales afectarán todos los aspectos de nuestra vida en el futuro cercano:

En este trabajo se explicaran algunas de las propiedades y aplicaciones de de los mas importantes materiales que existen actualmente. . Nuestro objetivo es demostrar cómo podemos entender muchas propiedades físicas o químicas especiales en términos de los principios que hemos visto en capítulos anteriores. Comprobaremos que las propiedades observables de los materiales son el resultado de estructuras y procesos en los niveles atómico y molecular. Examinaremos cuatro tipos: cristales líquidos, polímeros, materiales cerámicos y películas finas, y un adicional llamado Biomateriales.
1. CRISTALES LÍQUIDOS
Lamamos líquido a una sustancia que fluye y toma la forma del recipiente que la contiene; pero, por otra, a un cristal lo concebimos como sustancia sólida y rígida. De modo que, al menos intuitivamente, ¡un cristal es precisamente lo opuesto a un líquido! Y sin embargo existen sustancias reales, los cristales líquidos, que exhiben la dualidad sólido-líquido, es decir, que, simultáneamente, poseen propiedades de los líquidos, fluidez y viscosidad, y propiedades ópticas que se parecen de modo asombroso a las de los cristales como, por ejemplo, poder reflejar colores diferentes dependiendo del ángulo bajo el cual se les observe.
En los últimos treinta años se ha descubierto que estas sustancias ocupan un lugar único en la naturaleza. Así, se sabe que los cristales líquidos desempeñan un papel fundamental en los organismos vivos, pues el DNA forma diversas fases líquido cristalinas; también se les utiliza para fabricar dispositivos electrónicos, como los indicadores electro-ópticos que muestran letras y símbolos diversos en las calculadoras de bolsillo o en las carátulas de los relojes electrónicos modernos (Figura 20).
También han permitido fabricar pantallas de TV extraordinariamente delgadas y hacen posible el desarrollo de ventanas o cortinas que con sólo accionar un interruptor se hacen transparentes o totalmente opacas (Figura 21).
Estos líquidos tan peculiares son también esenciales para fabricar nuevos materiales, entre ellos fibras de muy alta resistencia y son de gran utilidad en la recuperación del petróleo. Y la lista de las aplicaciones de estos líquidos exóticos continúa creciendo sin cesar... Pero antes de examinar con más detalle cuáles son las propiedades de los cristales líquidos que hacen posible estas aplicaciones, hagamos un poco de historia.

 Figura 20. Indicador numérico electro-óptico fabricado con cristales líquidos.
Los cristales líquidos fueron descubiertos hace más de cien años (1888) por el botánico austriaco F. Reinitzer, quien encontró que algunos compuestos orgánicos derivados del colesterol parecían tener dos puntos de fusión. Más específicamente, observó que al calentar los cristales de estas sustancias a 145° C, el sólido se transformaba en un líquido turbio; pero éste a su vez, se convertía en un líquido totalmente claro y transparente precisamente a 179° C. Reinitzer también realizó el proceso inverso y enfrió el líquido transparente observando que exactamente a las mismas temperaturas anteriores ocurrían las transformaciones opuestas. Como además los cambios observados iban acompañados de absorción o emisión de calor, dependiendo de si la temperatura aumentaba o disminuía y, asimismo, como el volumen del sistema cambiaba en forma abrupta, Reinitzer concluyó que la sustancia en realidad exhibía dos cambios o transiciones de fase sucesivas. Al poco tiempo de estas primeras observaciones (1889), el cristalógrafo alemán F. Lehmann descubrió que el líquido turbio intermedio entre los cristales y el líquido transparente poseía propiedades ópticas y una estructura molecular muy parecida a la de un cristal sólido, y acuñó el nombre de cristal líquido. Aun sin darse plena cuenta, lo que en realidad habían descubierto era un nuevo estado de la materia: las fases intermedias o mesofases.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Figura 21. Ventana de cristal líquido con transparencia controlable.
Sin embargo, a pesar de que inicialmente los cristales líquidos despertaron gran interés y fueron muy estudiados durante el primer tercio de este siglo, pronto fueron relegados a un rincón de la física y cayeron rápidamente en el olvido subsistiendo sólo como curiosidad de laboratorio. Diversos factores contribuyeron a esta pérdida de interés, uno de ellos fue el prejuicio, fuertemente arraigado en el hombre desde la remota antigüedad, según el cual las tres nociones: gas, líquido y sólido describen todaslas posibles fases de la materia. Esta actitud, aún no superada en los años treinta de este siglo, conlleva naturalmente un rechazo a la dualidad sólido-líquido exhibida por los cristales líquidos. En consecuencia no es de extrañar que la aparente ambigüedad en el punto de fusión descubierta por Reinitzer se atribuyera únicamente a la presencia de "impurezas" en el sistema bajo estudio.
Otro factor preponderante fue el gran desarrollo logrado en el segundo tercio de este siglo en otros campos de la ciencia como la física de semiconductores, la química de polímeros, la física atómica o el espectacular desarrollo de la electrónica. Todos estos avances y la entonces falta de aplicaciones prácticas de los cristales líquidos, frenaron y eclipsaron su desarrollo. Pero, paradójicamente, los mismos avances y, de manera especial el proceso de miniaturización de los dispositivos electrónicos, produjeron el renacimiento y auge que los cristales líquidos tienen en nuestros días. En efecto, en este afán de miniaturización la electrónica pasó de los bulbos a los transistores, después a los microcircuitos y finalmente a los circuitos integrados actuales.
Este proceso tuvo como consecuencia importantísima la disminución de las potencias consumidas y, por tanto, la reducción de las fuentes de alimentación energética en aparatos e indicadores electrónicos. Sin embargo, ocurrió algo muy lógico pero que no se había anticipado: al reducir tanto las dimensiones de los dispositivos electrónicos ¡casi se perdió la comunicación con ellos mismos! Cada vez era más difícil transmitir —a bajo costo— la información al hombre, pues los diodos semiconductores emisores de luz consumen grandes corrientes eléctricas y los cinescopios de televisión son demasiado grandes. Faltaba, pues, un puente de comunicación entre lo muy pequeño y el mundo macroscópico. Es entonces, a principios de los años sesenta, cuando los cristales líquidos son recordados y comienza su resurgimiento hasta convertirse en uno de los campos más activos en la investigación científica interdisciplinaria con enormes posibilidades de aplicación tecnológicas.
Pero, se preguntará el lector, ¿qué propiedades físicas son las que hacen tan especiales a los cristales líquidos? y, sobre todo, ¿es posible entender estas propiedades en términos de las nociones más familiares o intuitivas que tenemos de los líquidos ordinarios o los cristales? Para contestar estas preguntas es necesario examinar brevemente las características de la estructura e interacción de las moléculas de un cristal líquido.
Un cristal líquido fluye, se escurre y toma la forma del recipiente que lo contiene, de la misma manera que lo hace un líquido ordinario como, por ejemplo, el agua. Pero a diferencia de ésta, cuyas moléculas son relativamente simples y prácticamente esféricas, las moléculas de un cristal líquido son, por lo general, o muy alargadas en forma de barra o aplanadas en forma de disco (Figura 22).
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Figura 22. Las moléculas de cristal líquido tienen forma de barras o discos.
Esta asimetría molecular tiene una consecuencia muy importante, los átomos dentro de la molécula se sitúan preferentemente a lo largo del eje de la molécula o bien en el plano definido por la molécula misma, dando lugar a una estructura molecular complicada, según se ilustra en la figura 23.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Figura 23. Nubes electrónicas: los enlaces entre los átomos producen una distribución de carga complicada en las moléculas.
Ahora bien, recordemos que cada átomo consta de un núcleo con carga eléctrica positiva rodeado por una nube de electrones con carga eléctrica negativa que compensa exactamente la del núcleo, de manera que los átomos, y por tanto las moléculas, son eléctricamente neutros. Esta disposición de los núcleos y nubes electrónicas produce una distribución de carga bastante compleja dentro de la molécula (Figura 24).
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Figura 24. (a) líneas de fuerza del campo eléctrico de un dipolo, (b) fuerzas de atracción entre dipolos.
Pero esta configuración no es estática, sino que cambia cuando dos moléculas se acercan entre sí. En efecto, cuando esto ocurre, las nubes electrónicas son las primeras en entrar en contacto y se repelen por tener cargas del mismo signo, de modo que a distancias comparables con las dimensiones moleculares mismas, las fuerzas intermoleculares son repulsivas y tienden a alejar a las nubes electrónicas y en consecuencia a las moléculas. Pero esta repulsión también produce el desplazamiento relativo de las nubes electrónicas con respecto a sus núcleos. Como esto ocurre en cada átomo, en las moléculas alargadas el efecto neto podemos describirlo imaginando que la presencia de una molécula de cristal líquido produce una distorsión en la distribución de carga eléctrica de la otra molécula, de modo que la carga positiva neta de los núcleos queda separada una cierta distancia de una carga negativa de igual magnitud. Como es sabido, a esta configuración de carga se le llama un dipolo eléctricoy a la línea que une ambas cargas se le llama eje del dipolo, que coincide entonces con el eje largo de la molécula. Así que podemos concluir que una molécula de cristal líquido induce la formación de dipolos eléctricos en las moléculas vecinas. Debe señalarse, sin embargo, que es más fácil que la nube electrónica se desplace con respecto al núcleo positivo a lo largo del eje de la molécula que transversalmente a él —a lo largo del eje corto— aunque esto último también es posible dependiendo de la estructura molecular. Ahora debemos averiguar a qué conduce esta formación de dipolos en todo el cristal líquido.
Sabemos que cada configuración de cargas eléctricas crea un campo eléctrico E en el espacio que la rodea. La estructura espacial específica de cada campo, es decir, cómo varia su magnitud con la posición y cuál es su dirección en cada punto, es una propiedad de cada configuración de carga, pero es precisamente a través de este campo como cada configuración ejerce fuerzas sobre otras cargas eléctricas. En el caso del dipolo eléctrico la estructura de este campo está representada por las líneas de fuerzaque se muestran en la figura 24 (a) y sus propiedades son tales que, si en la región ocupada por este campo se coloca otro dipolo, las fuerzas que el campo del primero produce fuerza a que los dipolos se orienten como se muestra en la figura 24 (b). Es decir, la mayor parte de los átomos de una molécula trata de situarse al lado de los átomos de otra, de modo que las cargas del mismo signo se sitúen lo más cerca unas de otras. El resultado neto es que así se genera una fuerza atractiva entre los dipolos. Entonces, cuando dos moléculas de un cristal líquido se encuentran separadas a distancias mayores que sus dimensiones, las moléculas se atraen. Es claro que de acuerdo con este modelo simplificado de la interacción entre moléculas se sigue que debe existir una distancia entre ellas para la cual las fuerzas atractivas y repulsivas se equilibren y, en consecuencia, la configuración relativa de las moléculas sea la más estable y la más favorable desde el punto de vista energético. Por lo tanto es de esperarse que las moléculas de cristal líquido tiendan a adoptar esta configuración manteniendo sus ejes dipolares o planos característicos paralelos entre sí. Concluimos entonces que, debido a la estructura de sus moléculas y en especial debido a la asimetría de las mismas, un cristal líquido adopta configuraciones altamente ordenadas. Aunque el mecanismo de interacción molecular que hemos descrito es básicamente el mismo que genera el orden en los cristales sólidos. No debe olvidarse una diferencia esencial entre ambos sistemas: en todo momento los cristales líquidos permanecen en estado líquido, lo cual implica que los centros de masa de sus moléculas no forman una red periódica sino que fluyen manteniendo el orden en la orientación común de sus ejes moleculares.
De acuerdo con el tipo de arreglos moleculares que pueden formar, Friedel (1922) clasificó los cristales líquidos en tres grandes clases: nemáticos, esmécticos y colestéricos. La fase nemática exhibe orden en la orientación de sus moléculas y al mismo tiempo desorden en la posición de sus centros de masa. Las moléculas pueden moverse lateralmente, girar alrededor del eje común o deslizarse paralelamente a él (Figura 25).
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Figura 25. La fase nemática exhibe orden de orientación, pero desorden en la posición de los centros de masa moleculares.
Podríamos comparar este arreglo molecular con el de los cerillos dentro de una caja: aunque pueden moverse, la presencia de los demás impone restricciones a estos movimientos y tiende a mantenerlos paralelos entre sí. De este modo, respecto a la posición de sus centros de masa, un nemático se comporta como un líquido ordinario y sus moléculas se mueven caóticamente. En cambio difiere totalmente de un líquido ordinario en que sus moléculas se orientan y al moverse mantienen sus ejes paralelos a una dirección común. Es preciso señalar que, por supuesto, este orden nunca es perfecto, sólo ocurre a temperaturas moderadas cuando las variaciones térmicas no son tan intensas como para destruir totalmente este orden de orientación. Recordemos que ya desde las primeras observaciones de Reinitzer sabemos que al calentar un cristal líquido éste se convierte en un líquido ordinario. También es importante mencionar que, además de la temperatura, otras propiedades, como la densidad, son de gran importancia para determinar el grado de orden o el tipo de fase líquido cristalina que puede formarse. En efecto, cuando el número de moléculas por unidad de volumen es elevado, o sea, cuando la densidad es grande, las moléculas están más cerca unas de otras y las interacciones repulsivas entre ellas son más intensas, lo cual favorece la aparición de orden tanto de orientación como de posición en el cristal líquido. Sin embargo, estas fluctuaciones térmicas producen defectos en la orientación los cuales dan lugar a estructuras microscópicas en forma de hilo que flotan en el nemático o que se adhieren a la superficie del recipiente. Precisamente esta característica fue el origen del nombre nemático que en griego significa hilo.
En contraste con los nemáticos, que son la fase más desordenada de los cristales líquidos, los esmécticos constituyen la fase más ordenada. Tienden a organizarse en capas planas paralelas entre sí, como las hojas de un libro pero con sus ejes moleculares perpendiculares a estos planos y paralelos entre sí. Éste es, por ejemplo, el arreglo de las moléculas en las capas superficiales de una pompa de jabón y es el que le proporciona la cohesión necesaria para formarse. De hecho, esméctico se deriva del vocablo griego que designa una sustancia de propiedades similares al jabón. Como en los nemáticos, las moléculas de esméctico también pueden girar alrededor de la dirección de orientación común pero no pueden hacerlo fuera de la capa en que se encuentran. En cada plano las moléculas pueden acomodarse en filas con diferentes grados de orden de posición de sus centros de masa. En el caso más ordenado se produce un arreglo regular muy parecido al de la red de un sólido, en el que hay orden y repetición en cada dirección (Figura 26).

}

 Figura 26. Un cristal esméctico con orden de orientación de los ejes moleculares y orden en la posición de sus centros de masa.


En cambio, en el arreglo más desordenado los centros de masa moleculares se mueven caóticamente en cada plano, de modo que en este caso el esméctico es nemático por planos (Figura 27). Debe enfatizarse, sin embargo, que en cualquier caso el esméctico es siempre fluido y las diferentes capas se deslizan, en mayor o menor grado, unas sobre otras.


Figura 27. Capas de esméctico en las que no existe orden de posición. Se comportan como nemáticas en cada plano.


Hemos visto cómo la arquitectura molecular de los cristales líquidos favorece, a temperaturas y densidades moderadas, la aparición de una dirección especial a lo largo de la cual se orientan las moléculas alargadas y perpendicularmente a ella en las moléculas en forma de disco. La peculiaridad de este tipo de materiales es que la existencia de una dirección preferida afecta el comportamiento de los rayos luminosos en el material cambiando su intensidad, color y dirección de propagación. Por esta razón a esta dirección especial se le llama el eje óptico del material y es la causa de muchos fenómenos ópticos importantes. Es necesario subrayar aquí que la existencia del eje óptico es un fenómeno colectivo que se da en forma espontánea en los cristales líquidos. Así, por ejemplo, si un rayo de luz blanca incide sobre el cristal líquido formando un ángulo con el eje óptico puede transformarse en luz de color al transmitirse a través del líquido pues la velocidad de la luz en el fluido depende de la dirección de propagación respecto al eje óptico. Pero, además de este cambio en el color, también puede ocurrir que el rayo saliente se divida en dos rayos luminosos cuyas intensidades relativas varíen dependiendo de la dirección del rayo incidente con el eje óptico. A este fenómeno se le llama birrefringencia.
Por otra parte, es bien conocido que los cristales sólidos con ejes ópticos se usan en múltiples aplicaciones tecnológicas en las que es necesario dirigir los rayos luminosos en forma rápida y precisa. Una aplicación muy conocida es la de los polaroides o polarizadores, que sólo transmiten algunos de los rayos luminosos que inciden sobre ellos y que se usan ampliamente en la fotografía en colores o para fabricar lentes que protejan los ojos de la luz deslumbradora del Sol. Para entender mejor la función de un polarizador recordemos que cada onda electromagnética emitida por un sistema particular de cargas en movimiento, consta de un campo eléctrico E y un campo magnético H que oscilan transversalmente a la dirección de propagación de la onda (Figura 29). Aunque en cada onda el campo eléctrico está orientado de modo preciso, en un rayo de luz compuesto de muchas ondas emitidas por diferentes sistemas de cargas a diferentes tiempos, no hay en general una dirección —"polarización"— bien determinada del campo eléctrico total. Cuando esto ocurre se dice que la luz es natural o no polarizada.
Los polarizadores permiten, precisamente, convertir la luz natural en polarizada al eliminar del rayo de luz todas aquellas ondas cuya polarización no sea la requerida. Ya que los cristales líquidos poseen eje óptico no es de extrañar que también exhiban muchos de estos fenómenos, los cuales son totalmente insólitos en los líquidos ordinarios. Sin embargo, a diferencia de los cristales sólidos los cristales líquidos presentan una ventaja enorme: debido a la relativa debilidad de las fuerzas de interacción molecular, la orientación del eje óptico se puede variar con mayor facilidad. Existen diversos métodos para "manejar" el eje óptico de un cristal líquido, todos ellos basados en la enorme capacidad de estos sistemas para responder a la acción de campos externos.



El primer fenómeno en el que se observó que el eje óptico cambia de dirección bajo la acción de un campo eléctrico es el ahora llamado efecto Freederiks(1943), descubierto por el físico ruso del mismo nombre. Este fenómeno se observa con mayor facilidad en un nemático y, como veremos, constituye la base física del funcionamiento de los indicadores electro-ópticos de las carátulas de relojes y calculadoras electrónicas modernas. Si un campo eléctrico externo actúa sobre un nemático, interacciona con los dipolos de sus moléculas y las hace girar de manera tal que su eje largo tiende a colocarse paralelamente al campo aplicado o en dirección perpendicular a él, dependiendo de que el momento dipolar de la molécula esté dirigido en la dirección de su eje largo o corto, respectivamente. Pero ya hemos visto que en un nemático todas las moléculas mantienen una misma orientación debido a las características de su interacción mutua; así que si una molécula de nemático se reorienta bajo la acción de un campo externo, las demás se reorientan también en la misma dirección. Por lo tanto, basta con aplicar un campo eléctrico pequeño para producir una reorientación de todo el eje óptico del nemático.
Un indicador electro-óptico consta básicamente de una celda diminuta con los siguientes elementos: una capa muy delgada (0.01-0.1 mm) de cristal líquido, por lo general un nemático, colocado entre dos placas de vidrio cada una de las cuales está unida a un polarizador. Estas placas se pulen de manera tal que la cohesión entre las moléculas y las placas sólidas sea máxima, lo cual se logra produciendo surcos en las placas de aproximadamente las dimensiones de una molécula de nemático. Así se consigue que las moléculas que están en contacto con las placas se alineen con la dirección de pulimento y, por las características de las interacciones moleculares, todas las moléculas en el espesor de la capa se alinean exactamente en la misma dirección. Si bajo estas condiciones una placa se gira noventa grados respecto a la otra —debido a que a grandes distancias de las placas el influjo del vidrio sobre las moléculas de nemático es menor que cerca de las superficies sólidas— las moléculas, y por lo tanto el eje óptico del cristal líquido, se reorientan adquiriendo la configuración torcida

Leonard A  Quintero C
CAF


Propiedad de los Materiales

Propiedad de los Materiales



En el presente trabajo vamos a ver a grandes rasgos algunos conceptos que intregran la materia de Tecnología de los Materiales, los cuales nos serviran para poder tener en claro algunas ideas que nos serviran para tener una comprensión mas clara de dicha materia, asi mismo nos permitira familiarizarnos con la industria del acero sus tratamientos y aplicaciones a la industria y a la vida diaria, algunos de los conceptos que trataremos sera: Historia de los materiales y su evolucion a travez de loa años, veremos que esto ha ejercido cierta influencia en las sociedadesde todo el mundo, veremos la clasificacion de los materiales como son los metales, cerámicos y los plásticos, asi tambien veremos las propiedades físicas y químicas de dichos materiales y el como conocerlas nos permite trabajar de una manera mas eficiente con ellos tambien veremos las estructuras cristalinas, el como conocer la estructura interna de los materiales nos permite darles un mejor uso y que puedan se de mejor aprovechamiento, asi tambien los tratamientos termicos que dichos materiales pueden recibir con el objeto de darles una mayor durabilidad y mejor aplicaciones a la industria, otro aspecto que trataremos sera los aceros y como su uso y aplicaciones a lo largo del tiempo ha evolucionado y mejorado, algo que no podria faltar son los enlaces químicos y como conocerlos nos da ideas sobre el uso y aplicación de los materiales, anexaremos tambien un pequeño laboratorio de maquinas que su uso es las famosas pruebas de tensión, dureza, fatiga e impacto, las cuales nos permiten checar la calidad de los materiales de una manera cualitativa y cuantitativa veremos la grafica de Hierro Carburo de Hierro, la cual es usada en los procesosde fundición del acero, dicha grafica es de singular uso, ya que en ella se pueden observar todos los procesos de fundición del acero y de cómo este se trabaja, agregaremos tambien algunas microfotografias de las estructuras de la austenita, ferrita y otras, en ellas se puede observar los granos y tambien que distingue a una de la otra, es decir la micro estructura de los aceros, a lo largo de de este curso se prodran ver muchos conceptos que en su totalidad nos permiten asimilar como la industria de los materiales ha progresado y que aun los ingenieros hoy en dia trabajan con el unico fin de descubrir nuevos materiales y reinvantar los ya conocidos con el fin de mejorar la economia y poder aprovechar de manera optima los recursos que se tienen a la mano, a lo largo de las ultimas decadas este ha sido el queacer de la industria, no tan solo en los materiales sino en todas sus ramas, la evolucio de la industria y los nuevos tiempos traenmayores necesidades y es responsabilidad nuesra la optimizacion de los procesos industriales. Todas las industrias hoy buscan mejorar los procesod y poder reusar als mermas, todo como una cultura de reciclaje y mejora de la industria, la economia y el bienestar de la comunidaden conjunto; este trabajo tratara de darnos esas ideas para ser mas concientes y ademas para mejorar nuestro conocimiento de la ciencia y la tecnología de los materiales, debido a que no podemos quedarnos ausentes de los cambios que en nuestra industria se generan momento a momento, es de gran importancia el conocimiento de dichas tecnologías, aunque estas no esten presentes en nuestra vida de manera constante; esperamos que este material sea de provecho y utilidad para de uno u otro modo mejorar nuestra cultura de la industria y del uso adecuado y conciente de la materia prima, que de uno u otro modo debemos de ser cuidadosos en el uso que pretendamos darle a este recurso, los cambios dia con dia son irremediables y somos victimas de ellos y tenemos que caminar de la mano y a la par con ellos para poder sobrevivir económicamente, como economia nacional y vomo una economia individual, vera en este trabajo cada uno de los conceptos básicos que ayudan a saber y conocer mas de los materiales, ojala a medida que lo lea pueda disfrutar de el y hacer un uso correcto, el material es introductorio y no pretende ser un estudio detallado de los conceptos. Antes bien proporciona ideas y conceptos claros de esta ciencia y tecnología de los materiales, para el aprendis nuevo y deseoso de buscar.

2. Historia de los materiales y su clasificación

Los materiales son las sustancias que componen cualquier cosa o producto .Desde el comienzo de la civilización , los materiales junto con la energía han sido utilizados por el hombre para mejorar su nivel de vida. Como los productosestán fabricados a base de materiales , estos se encuentran en cualquier parte alrededor nuestro .Los mas comúnmente encontrados son madera, hormigón , ladrillo , acero , plástico , vidrio , caucho , aluminio , cobrey papel . Existen muchos mas tipos de materiales y uno solo tiene que mirar a su alrededor para darse cuenta de ello . Debido al progreso de los
programas de investigación y desarrollo , se están creando continuamente nuevos materiales.
La
producción de nuevos materiales y el procesado de estos hasta convertirlos en productos acabados , constituyen una parte importante de nuestra economía actual. Los ingenieros diseñan la mayoría de los productos facturados y los procesos necesarios para su fabricación . Puesto que la producción necesita materiales , los ingenieros deben conocer de la estructura interna y propiedad de los materiales , de modo que sean capaces de seleccionar el mas adecuado para cada aplicación y también capaces de desarrollar los mejores métodos de procesado.
Los ingenieros especializados en investigación trabajan para crear nuevos materiales o para modificar las propiedades de los ya existentes . Los ingenieros de diseño usan los materiales ya existentes , los modificados o los nuevos para diseñar o crear nuevos productos y sistemas . Algunas veces el problema surge de modo inverso : los ingenieros de diseño tienen dificultades en un diseño y requieren que sea creado un nuevo material por parte de los científicos investigadores e ingenieros.
La búsqueda de nuevos materiales progresa continuamente . Por ejemplo los ingenieros mecánicos buscan materiales para altas temperaturas , de modo que los
motores de reacción puedan funcionar mas eficientemente . Los ingenieros eléctricos procuran encontrar nuevos materiales para conseguir que los dispositivos electrónicos puedan operar a mayores velocidades y temperaturas .

3. Tipos de materiales

Por conveniencia la mayoria de los materiales de la ingenieria estan divididos en tres grupos principales materiales metálicos , poliméricos , y cerámicos
Materiales metálicos .
Estos materiales son sustancias inorgánicas que están compuestas de uno o mas elementos metálicos , pudiendo contener también algunos elementos no metálicos , ejemplo de elementos metalicos son hierro cobre , aluminio , niquel y titanio mientras que como elementos no metalicos podriamos mencionar al
carbono.
Los materiales de
cerámica , como los ladrillos , el vidrio la loza , los ailantes y los abrasivos , tienen escasas conductividad tanto electrica como termica y aunque pueden tener buena resistencia y dureza son deficientes en ductilidad , conformabilidad y resistencia al impacto..
Polimeros , en estos se incluyen el caucho (el hule) , los plásticos y muchos tipos de adhesivos . Se producen creando grandes estructuras moleculares apartir de moléculas orgánicas obtenidas del petroleo o productos agrícolas .
Fases componentes de un sólido desde su estructura intermolecular
Una sustancia pura como
el agua puede existir en las fases sólido, liquido y gas, dependiendo de las condiciones de temperatura y presión. Un ejemplo familiar para todos de dos fases de una sustancia pura en equilibrioes un vaso de aguacon cubos de hielo. En este caso el agua, sólida y liquida, da lugar a dos fases distintas separadas por una fase limite, la superficie de los cubos de hielo. Durante la ebullición del agua, el agua líquida y el agua vapor son dos fases en equilibrio. Una representación de las fases acuosas que existen bajo diferentes condiciones de presión y temperatura se muestra en la
En el
diagrama de fases presión-temperatura (PT} del agua existe un punto triple a baja presión (4579 torr) y baja temperatura (0,0098 0C) donde las fases sólida, liquida y gaseosa coexisten. Las fases liquida y gaseosa existen a lo largo de la línea de vaporización y las fases líquida y sólida a lo largo de la línea de congelación, como se muestra en la Figura 8.1. Estas lineas son lineas de equilibrio entre dos fases.
El díagrama de fases en equilibrio (PT) se puede construir también para otras sustancias puras. Por ejemplo, el diagrama de fases de equilibrio PT del hierro puro se muestra en la Figura 8.2. Una diferencia fundamental de este diagrama de fases es que tiene tres fases sólidas distintas y separadas: Fe alfa (~, Fe gamma (y) y Fe delta (~).
El hierro ~ y <5 tiene estructuras cristalinas BBC, mientras el hierro y tiene una estructura FCC. Las fases limite en
el estado sólido tienen las mismas propiedades que entre liquido y sólido. Por ejemplo, bajo condiciones de equilibrio, el hierro ~ y y puede existir a una temperatura de 910 0C y una atmósfera de presión. Por encima de 910 0C sólo existe la fase y, y por debajo de 910 0C sólo existe la fase ~ Hay también tres puntos triple en el díagrama PT del hierro donde las tres fases diferentes coexisten: (1) líquido, vapor Fe <5; (2) vapor, Fe <5 y Fe y; y (3) vapor, Fe y y Fe ~.enlaces existente para su configuración

4. Enlaces existentes para su configuración.

Enlaces metálicos
En metales en
estadosólido , los átomos se encuentran empaquetados relativamente muy juntos en una ordenación sistemática o estructura cristalina . Por ejemplo la disposición de los átomos de cobre en el cobre cristalino consiste que los átomos están tan juntos que sus electrones externos de valencia son atraídos por los núcleos de sus numeroso vecinos . En el caso del cobre sólido cada átomo está rodeado por otros 12 átomos más próximos . Los electrones de valencia no están por lo tanto asociados férreamente a un núcleo en particular y así es posible que se extiendan entre los átomos en forma de una nube electrónica de carga de baja densidado gas electrónico. Los átomos en un enlace metálico sólido se mantienen juntos por enlace metálico para lograr un estado de más baja energía ( o más estable) . Para el enlace metálico no hay restricciones sobre pares electrónicos como en el enlace covalente o sobre la neutralidad de carga como en el enlace iónico . En el enlace metálico los electrones de valencia más externos de los átomos son compartidos por muchos átomos circundantes y de este modo , en general , el enlace metálico no resulta direccional Fuerzas de van der Waals
Excepto en un gas muy dispersado las moléculas ejercen atracciones y repulsiones entre sí . Estas proceden fundamentalmente de interacciones dipolo-dipolo . Las moléculas no polares se atraen entre sí mediante interacciones débiles dipolo-dipolo llamadas fuerzas de London que surgen como consecuencia de dipolos inducidos en una molécula por otra. En este caso los electrones de una molecula son debilmente atraídos hacia el nucleo de otra pero entonces los electrones de esta son repelidos por los electrones de la primera. El resultado es una
distribucióndesigual de la densidad electrónica y , en consecuencia , un dipolo incluido . Las diferentes interacciones dipolo-dipolo (atractivas y repulsivas) se denominan conjuntamente fuerzas de van der Waals . La distancia entre las moléculas juega un importante papel en la intensidad de dichas fuerzas . Se llama radio de van der Waals a la distancia a la que la fuerzaatractiva es máxima .Cuando dos átomos se aproxima a distancias mas cortas que el radio de van der Waals , se desarrollan fuerzas repulsivas entre los núcleos y las capas electrónicas . Cuando la distancia entre dos moléculas es mayor al radio de van der Waals las fuerzas atractivas entre las moléculas disminuyen.
Enlace iónico
Los enlaces iónicos se pueden formar entre elementos muy electropositivos (metálicos) y elementos muy electronegativos (no metales) . En el
proceso de ionización los electrones son transferidos desde los átomos de los elementos electropositivos a los átomos de los elementos electronegativos , produciendo cationes cargados positivamente y aniones cargados negativamente . Las fuerzas de enlace son debidas a la fuerza de atracción electrostática o culombiana entre iones con carga opuesta . Los enlaces ionicos se forman entre iones opuestamente cargados por que se produce una disminución neta de la energía potencial para los iones enlazados
Enlace covalente
Un segundo tipo de enlace atómico primario es el enlace covalente . Mientras el enlace iónico involucra átomos muy electropositivos y electronegativos , el enlace covalente se forma entre átomos con pequeñas diferencias de electronegatividad y ubicados muy próximos en la tabla periódica . En el enlace covalnete los átomos generalmente comparten sus electrones externos s y p como otros átomos , de modo que cada átomo alcanza la configuración de gas noble. En un enlace covalente sencillo cada uno de los átomos contribuye con un electrón a la formación del par de electrones de enlace , y las energías de los dos átomos asociadas con el enlace covalente son menores (mas estables) como consecuencia de la
interacción de los electrones . En el enlace covalente , se pueden formar enlaces mútiples de pares de eletrones por un átomo consigo mismo o con otros átomos.
Redes cristalograficas existentes
Sistemas cristalográficos
Los cristaló
grafos han demostrado que son necesarias solo siete tipos diferentes de celda unidad para crear todas las redes puntuales . La mayor parte de etos siete sistemas cristalinos presentan variaciones de la celda unida básica . A. J. Bravais mostró que catorce celdas unidad estándar podian describir todas las estructuras reticulares posibles .Hay cuatro tipos de celdas unidad :
  • Sencilla
  • Centrada en el cuerpo
  • Centrada en las caras
  • Centrada en la base
En el sistema cúbico hay tres tipos de celdas unidad : cúbica sencilla , cúbica centrada en el cuerpo y cúbica centrada en las caras. En el sistema ortorrómbico están representados los cuatro tipos . En el sistema tetragonal hay solo dos: sencilla y centrada en el cuerpo. En el sistema monoclínico tiene celdas unidad sencilla y centrada en la base , y los sistemas romboedríco hexagonal y triclínico, tienen solo una celda unidad .
Estructuras cristalográficas
La mayoría de los metales elementales alrededor del 90 % cristalizan en tres estructuras cristalinas densamente enpaquetadas : cúbica centrada en el cuerpo (BCC) , cúbica centrada en las caras (FCC) y hexagonal compacta (HCP) . La estructura HCP es una modificación más densa de la estructura cristalina hexagonal sencilla . La mayor parte de los metales cristalizadas en esas estructuras densamente enpaquetadas debido a que se libera energía a medida que los átomos se apróximan y se enlazan cada vez más estrechamente entre sí . De este modo , dichas estructuras densamente enpaquetadas se encuentran es disposiciones u ordenamientos de energía cada vez más baja y estable Examinemos ahora detalladamente la disposición de los átomos en las celdas unidad de las tres principales estructuras cristalinas . Aunque solo sea una aproximación consideremos a los átomos de estas estructuras como esferas rígidas. La distancia entre los átomos en las estructuras cristalinas puede ser determinado experimentalmente por
análisis de rayos X. Por ejemplo , la distancia interatómica entre dos átomos de aluminio en un fragmento de aluminio puro a 20 0 C es 0.2862 nm.
Se considera que el radio del aluminio en el aluminio metal es la mitad de la distancia interatómica , o 0.143 nm.
Planos cristalinos
Dirección en la celda
A menudo , es necesario referirnos a posiciones específicas en las redes cristalinas . Esto es especialmente importante para metales y
aleaciones con propiedades que varían con la orientación cristalográfica . Para cristales cúbicos los indices de las direcciones cristalográficas son los componentes vectoriales de las direcciones resueltos a lo largo de cada eje coordenado y reducido a los enteros mas pequeños .
Para indicar en un diagrama la dirección en una celda cúbica unitaria dibujamos un vector de dirección desde el origen (que es normalmente una esquina de la celda cúbica) hasta que sale la superficie del cubo .Las coordenadas de posición de la celda unidad donde el vector de posición sale de la superficie del cubo despues de ser convertidas a enteros son los indices de dirección .Los indices de dirección se encierran entre corchetes sin separación por comas.
Planos en una celda unitaria
Las superficise cristalinas en celdillas unidad HCP pueden ser identificadas comúnmente utilizando cuatro indices en lugar de tres. Los indices para los planos cristalinos HCP ,llamados indices Miller-Bravais, son designados por las letras h , k , i , l y encerrados entre parentesis ( hkil ) . estos indices hexagonales de 4indices estan basados en un sistema coordenado de 4 ejes .
Existen 3 ejes basicos , a1 , a2 , a3, que forman 1200 entre si. El cuarto eje o eje c es el eje vertical y esta localizado en el centro de la celdilla unidad . La unidad a de medida a lo largo de los ejes a1 a2 a3 es la distancia entre los átomos a lo largo de estos ejes .la unidad de medida a lo largo del eje es la altura de la celdilla unidad . Los recíprocos de las intersecciones que un plano cristalino determina con los ejes , a1 , a2 , a3 proporciona los indices h , k e i mientras el recíproco de la intersección con el eje c da el índice l

Notación para planos
Los planos basales de la celdilla unidad HCP son muy importantes para esta celdilla unidad puesto que el plano basal de la celdilla HCP es pralelo a los ejes , a1 , a2 , a3 las intersecciones de este plano con estos ejes serán todas de
valor infinito . Así , a1 = ¥ , a2 = ¥ a3 = ¥ El eje c , sin embargo , es unico puesto que el plano basal superior intersecciona con el eje c a una distancia unidad . Tomando los reciprocos de estas intersecciones tenemos los indices de Miller-Bravais para el plano Basal HCP. Así , H =0 K=0 I = 0 y L=1. El plano basal es , por tanto un plano cero-cero-cero-uno o plano (0001) .
Importancia del indice de Milller
A veces es necesario referirnos a planos reticulares específicos de átomos dentro de una estructura cristalina o puede ser interesante conocer la orientación cristalográfica de un plano o
grupo de planos en una redcristalina. Para identificar planos cristalinops es estructuras cristalinas cúbicas se usa la notación de Miller . Los indices de Miller de un plano cristalino estan definidos como los reciprocos de las intersecciones , que el plano determina con los ejes x , y , z de los tres lados no paralelos del cubo unitario .Las aristas de una celda cúbica unitaria presentan longitudes unitarias y las intersecciones de los planos de una red se miden en base a estas longitudes unitarias .El procedimiento de determinación de los indices de Miller para un plano de un cristal cúbico es el siguiente:
  • Escoger un plano que no pase por el origen en (0,0,0)
  • Determinar las interacciones del plano en base a los ejes x,y,z cristalográficos para un cubo unitario , estas interacciones pueden ser fraccionarias
  • Construir los recíprocos de estas intersecciones
Despejar fracciones y determinar el conjunto mas pequeño de números esteros que estén en la misma razón que las intersecciones. Esos números enteros son los índices de Miller de un plano cristalográfico y se encierran entre paréntesis sin usar comas. La notación (hkl) se usa para indicar índices de Miller en sentido general , donde h ,k, y l son los indices de Miller para un plano de un cristal cúbico de ejes x,y,z respectivamente.

5. Estructuras cristalinas

La primera clasificación que se puede hacer de materiales en estado sólido, es en función de cómo es la disposición de los átomos o iones que lo forman. Si estos átomos o iones se colocan ordenadamente siguiendo un modelo que se  repite en las tres direcciones del espacio, se dice que el material es cristalino. Si los átomos o iones se disponen de un modo totalmente aleatorio, sin seguir ningún tipo de secuencia de ordenamiento, estaríamos ante un material no cristalino ó amorfo. En el siguiente esquema se indican los materiales sólidos cristalinos y los no cristalinos.
 En el caso de los materiales cristalinos, existe un ordenamiento atómico (o iónico) de largo alcance que puede ser estudiado con mayor o menor dificultad. Ahora bien, realmente ¿necesitamos estudiar los materiales a nivel atómico?.
Para responder a esta cuestión, podemos estudiar las principales propiedades de dos materiales tan conocidos como son el grafito (Fig.1) y el diamante (Fig.2). El grafito es uno de los materiales más blandos (tiene un índice de dureza entre 1y 2 en la escala Mohs), es opaco (suele tener color negro), es un buen lubricante en estado sólido y conduce bien la electricidad. Por contra, el diamante es el material más duro que existe (10 en la escala Mohs), es transparente, muy abrasivo y un buen aislante eléctrico. 
Como vemos, son dos materiales cuyas principales propiedades son antagónicas. Pero, si pensamos en sus componentes, nos damos cuenta que tanto uno como el otro están formados únicamente por carbono. Entonces, ¿a que se debe que tengan propiedades tan dispares?. La respuesta está en el diferente modo que tienen los átomos de carbono de enlazarse y ordenarse cuando forman grafito y cuando forman diamante; es decir, el grafito y el diamante tienen distintas estructuras cristalinas.     
Ruina Universal de
Ensayos:  capacidad máxima de 120kN (12 t), con cuatro escalas, se realizan ensayos de tensión, compresión, flexión y corte.
Durómetro Universal Digital:  durezas Rockwell, Brinell y Vickers.
Péndulo de Impacto:  ensayos según métodos Charpy e Izod, capacidad máxima 300J.  Para metales.
Péndulo de Impacto para Plásticos:  capacidad máxima aproximada 8J.
Cámara Climática:  ensayos con temperatura y humedad variable.
Máquina de Fatiga por Flexión Rotativa:  capacidad máxima de 270kg*cm.

6. Aceros.

No se conoce con exactitud la fecha en que se descubrió la técnica de fundir mineral de hierro para producir el metal para ser utilizado. Los primeros utensilios de hierro descubiertos por los arqueólogos en Egipto datan del año 3.000 a.c., y se sabe que antes de esa época se empleaban adornos de hierro; los griegos ya conocían hacia el 1.000 a.c, la técnica de cierta complejidad para endurecer armas de hierro mediante tratamiento térmico.
Las aleaciones producidas por los primeros artesanos del hierro (y, de hecho, todas las aleaciones de hierro fabricadas hasta el siglo XIV d.c.) se clasifican en la actualidad como hierro forjado. Para producir esas aleaciones se calentaba una masa de mineral de hierro y carbón vegetal en un horno o forja con tiro forzado. Ese tratamiento reducía el mineral a una masa esponjosa de hierro metálico lleno de una
escoria formada por impurezas metálicas y cenizas de carbón vegetal. Esta esponja de hierro se retiraba mientras permanecía incandescente y se golpeaba con pesados martillos para expulsar la escoria y dejar el hierro. El hierro producido en esas condiciones solía contener un 3% de partículas de escoria y un 0,1% de otras impurezas. En ocasiones esta técnica de fabricación producía accidentalmente
auténtico acero en lugar de hierro forjado. Los artesanos del hierro aprendieron a fabricar acero calentando hierro forjado y carbón vegetal en recipientes de arcilla durante varios días, con lo que el hierro absorbía suficiente carbono para convertirse en acero.
Después del siglo XIV se aumentó el tamaño de los hornos utilizados para la fundición y se incrementó el tiro para forzar el paso de los gases de combustión por la carga o mezcla de materias primas. En estos hornos de mayor tamaño el mineral de hierro de la parte superior del horno se reducía a hierro metálico y a continuación absorbía más carbono como resultado de los gases que lo atravesaban. El producto de estos hornos era el llamado arrabio, una aleación que funde a una temperatura menor que el acero o el hierro forjado. El arrabio se refinaba después para fabricar acero.
La producción moderna de arrabio emplea altos hornos que son
modelos perfeccionados de los usados antiguamente. El proceso de refinado del arrabio para la producción de acero mediante chorros de aire se debe al inventor británico Henry Bessemer, que en 1855 desarrolló el horno o convertidor que lleva su nombre. Desde la década de 1960 funcionan varios minihornos que emplean electricidad para producir acero a partir de chatarra.
Las aleaciones de hierro y carbono -aceros y fundiciones- son las aleaciones metálicas más importantes de la civilización actual. Por su
volumen, la producción de fundición y de acero supera en más de diez veces la producción de todos los demás metales juntos.
Corrientemente se da el nombre de acero y fundición, a las aleaciones hierro - carbono (si tienen más del 2% de C son fundiciones y si tienen menos del 2% de C son aceros).
El hierro forma
soluciones con muchos elementos: con los metales, soluciones por sustitución, con el carbono, nitrógeno e hidrógeno, soluciones por inserción.
La solubilidad del carbono en el hierro depende de la forma cristalográfica en que se encuentra el hierro. La solubilidad del carbono en el hierro ( cúbica de cuerpo centrado) es menor que el 0,02% y en el hierro (cúbica da caras centradas) es hasta el 2%.
Se distinguen tres grupos de aceros al carbono: eutectoides, que contienen cerca de un 0,8% de C, cuya estructura está constituida únicamente por perlita: Hipoeutectoides, que contienen menos del 0,8% de C, con estructura formada por ferrita y perlita; e Hipereutectoides, que contienen del 0,8 al 2% de C y cuya estructura consta de perlita y cementita.


7. Microestructuras De Los Aceros

Los constituyentes metálicos que pueden presentarse en los aceros al carbono son: ferrita, cementita, perlita, sorbita, troostita, martensita, bainita, y rara vez austenita, aunque nunca como único constituyente. También pueden estar presentes constituyentes no metálicos como óxidos, silicatos, sulfuros y aluminatos.
El análisis de las microestructuras de los aceros al carbono recocidos y fundiciones blancas deben realizarse en base al diagrama metaestable Hierro-carburo de hierro o Cementita.

Diagrama Fe-C
Las microestructuras que presenta el diagrama de equilibrio para los aceros al carbono son:
FERRITA (Hierro a)
Es una solución sólida de carbono en hierro alfa, su solubilidad a la temperatura
ambiente es del orden de 0.008% de carbono, por esto se considera como hierro puro, la máxima solubilidad de carbono en el hierro alfa es de 0,02% a 723 °C. 
Microestructura del acero al carbono, cristales blancos de ferrita
La ferrita es la fase más blanda y dúctil de los aceros, cristaliza en la red cúbica centrada en el cuerpo, tiene una dureza de 90 Brinell y una resistencia a la tracción de 28 kg/mm2, llegando hasta un alargamiento del 40%. La ferrita se obsera al
microscopio como granos poligonales claros.
En los aceos, la ferrita puede aparecer como cristales mezclados con los de perlita, en los aceros de menos de 0.6%C, figura 6; formando una red o malla que limita los granos de perlita, en los aceros de 0.6 a 0.85%C en forma de agujas o bandas circulares orientados en la dirección de los planos cristalográficos de la austenita como en los aceros en bruto de colada o en aceros que han sido sobrecalentados. Este tipo de estructura se denomina Widmanstatten.
La ferrita también aparece como elemento eutectoide de la perlita formando láminas paralelas separadas por otras láminas de cementita, en la estructura globular de los aceros de
herramientas aparece formando la matriz que rodea los glóbulos de cementita, figura 9, en los aceros hipoeutectoides templados, puede aparecer mezclada con la martensita cuando el temple no ha sido bien efectuado.

8. Cementita

Es el carburo de hierro de fórmula Fe3C, contiene 6.67 %C y 93.33 % de hierro, es el microconstituyente más duro y frágil de los aceros al carbono, alcanzando una dureza Brinell de 700 (68 Rc) y cristaliza en la red ortorómbica.
Microestructura del acero 1%C, red blanca de dementita
En las probetas atacadas con
ácidos se observa de un blanco brillante y aparece como cementita primaria o proeutéctica en los aceros con más de 0.9%C formando una red que envuelve los granos de perlita, formando parte de la perlita como láminas paralelas separadas por otras láminas de ferrita, se presenta en forma de glóbulos o granos dispersos en una matriz de ferrita, cuando los aceros de alto carbono se han sometido a un recocido de globulización, en los aceros hipoeutectoides que no han sido bien templados.
Perlita
Es el microconstituyente eutectoide formado por capas alternadas de ferrita y cementita, compuesta por el 88 % de ferrita y 12 % de cementita, contiene el 0.8 %C. Tiene una dureza de 250 Brinell, resistencia a la tracción de 80 kg/mm2 y un alargamiento del 15%; el nombre de perlita se debe a las irisaciones que adquiere al iluminarla, parecidas a las perlas. La perlita aparece en general en el enfriamiento lento de la austenita y por la transformación isotérmica de la austenita en el rango de 650 a 723°C.

Microestructura del acero al carbono, cristales oscuros de perlita
Si el enfriamiento es rápido (100-200°C/seg.), la estructura es poco definida y se denomina Sorbita, si la perlita laminar se somete a un recocido a temperatura próxima a 723°C, la cementita adopta la forma de glóbulos incrustados en la masa de ferrita, denominándose perlita globular.

Austenita
Es el constituyente más denso de los aceros y está formado por una solución sólida por inserción de carbono en hierro gamma. La cantidad de carbono disuelto, varía de 0.8 al 2 % C que es la máxima solubilidad a la temperatura de 1130 °C. La austenita no es estable a la temperatura ambiente pero existen algunos aceros al cromo-níquel denominados austeníticos cuya estructura es austenita a temperatura ambiente.
La austenita está formada por cristales cúbicos centrados en las caras, con una dureza de 300 Brinell, una resistencia a la tracción de 100 kg/mm2 y un alargamiento del 30 %, no es magnética.

Microestructura de la austenita
La austenita no puede atarcarse con nital, se disuelve con agua regia en glicerina apareciendo como granos poligonales frecuentemente maclados, puede aparecer junto con la martensita en los aceros templados.

Martensita
Es el constituyente de los aceros templados, está conformado por una solución sólida sobresaturada de carbono o carburo de hierro en ferrita y se obtiene por enfriamiento rápido de los aceros desde su estado austenítico a altas temperaturas.
El contenido de carbono suele variar desde muy poco carbono hasta el 1% de carbono, sus propiedades físicas varían con su contenido en carbono hasta un máximo de 0.7 %C.

Microestructura de la martensita
La martensita tiene una dureza de 50 a 68 Rc, resistencia a la tracción de 170 a 250 kg/mm2 y un alargamiento del 0.5 al 2.5 %, muy frágil y presenta un aspecto acicular formando grupos en zigzag con ángulos de 60 grados.
Los aceros templados suelen quedar demasiado duros y frágiles, inconveniente que se corrige por medio del revenido que consiste en calentar el acero a una temperatura inferior a la
crítica inferior (727°C), dependiendo de la dureza que se desee obtener, enfriándolo luego al aire o en cualquier medio.
Troostita
Es un agregado muy fino de cementita y ferrita, se produce por un enfriamiento de la austenita con una
velocidad de enfriamiento ligeramente inferior a la crítica de temple o por transformación isotérmica de la austenita en el rango de temperatura de 500 a 6000C, o por revenido a 4000C.
Sus propiedades físicas son intermedias entre la martensita y la sorbita, tiene una dureza de 400 a 500 Brinell, una resistencia a la tracción de 140 a 175 kg/mm2 y un alargamiento del 5 al 10%. Es un constituyente nodular oscuro con estructura radial apreciable a unos 1000X y aparece generalmente acompañando a la martensita y a la austenita
Sorbita
Es también un agregado fino de cementita y ferrita. Se obtiene por enfriamiento de la austenita con una velocidad de enfriamiento bastante inferior a la crítica de temple o por transformación isotérmica de la austenita en la zona de 600 a 650%, o por revenido a la temperatura de 600%. Su dureza es de 250 a 400 Brinell, su resistencia a la tracción es de 88 a 140 kg/mm2 ,con un alargamiento del 10 al 20%.
Con pocos aumentos aparece en forma muy difusa como manchas, pero con 1000X toma la forma de nódulos blancos muy finos sobre fondo oscuro, figura 16; de hecho tanto la troostita como la sorbita pueden considerarse como perlita de grano muy fino.

Bainita
Es el constituyente que se obtiene en la transformación isotérmica de la austenita cuando la temperatura del baño de enfriamiento es de 250 a 500°C. Se diferencian dos tipos de estructuras: la bainita superior de aspecto arborescente formada a 500-580°C, compuesta por una matriz ferrítica conteniendo carburos. Bainita inferior, formada a 250-4000C tiene un aspecto acicular similar a la martensita y constituida por agujas alargadas de ferrita que contienen delgadas placas de carburos.
La bainita tiene una dureza variable de 40 a 60 Rc comprendida entre las correspondientes a la perlita y a la martensita.
Los constituyentes que pueden presentarse en los aceros aleados son los mismos de los aceros al carbono, aunque la austenita puede ser único contituyente y además pueden aparecer otros carburos simples y dobles o complejos.

La determinación del tamaño de grano austenítico o ferrítico, puede hacerse por la norma ASTM o por comparación de la microfotografías de la probeta a 100X, con las retículas patrón numeradas desde el 1 para el grano más grueso hasta el 8 para el grano más fino.
En el sistema ASTM el grosor del grano austenitico se indica con un número convencional n, de acuerdo con la formula:
logG=(n-1)log2
Donde G es el número de granos por pulgada cuadrada sobre una
imagen obtenida a 100 aumentos; este método se aplica a metales que han recristalizado completamente, n es el número de tamaño de grano de uno a ocho.
Forma, tamaño y distribución de los cristales o granos en la microestructura del acero para comparación a 100X
Cualquier proceso de producción de acero a partir del Arrabio consiste en quemar el exceso de carbono y otras impurezas presentes en el hierro.
Una dificultad para la fabricación del acero es su elevado punto de
fusión, 1.400ºC aproximadamente, que impide utilizar combustibles y hornos convencionales.
Para superar esta dificultad, se han desarrollado 3 importantes tipos de hornos para el refinamiento del Acero, en cada uno de estos procesos el
oxígeno se combina con las impurezas y el carbono en el metal fundido. El oxígeno puede introducirse directamente mediante presión dentro o sobre la carga a través del oxígeno en el aire, o en forma de óxidos de hierro o herrumbre en la chatarra. Esto oxidará algunas impurezas, las que se perderán como gases, mientras otras impurezas reaccionarán con la piedra caliza fundida para formar una escoria que será colada posteriormente.

9. Tipos de hornos

Horno de hogar abierto o crisol
El horno de hogar abierto semeja un horno enorme, y se le denomina de esta manera porque contiene en el hogar (fondo) una especie de piscina larga y poco profunda (6m de ancho, por 15 m de largo, por 1 m de profundidad, aproximadamente).
El horno se carga en un 30% a un 40% con chatarra y piedra caliza, empleando aire pre-calentado, combustible líquido y gas para la combustión, largas
lenguasde fuego pasan sobre los materiales, fundiéndolos. Al mismo tiempo, se quema (o se oxida) el exceso de carbono y otras impurezas como el fósforo, silicio y manganeso.
Este proceso puede acelerarse introduciendo tubos refrigerados por agua (lanzas), los que suministran un grueso flujo de oxígeno sobre la carga.
Periódicamente, se revisan muestras de la masa fundida en el laboratorio para verificar la composición empleando un instrumento denominado espectrómetro. También se determinan los niveles de carbono.
Si se está fabricando acero de aleación, se agregarán los elementos de aleación deseados. Cuando las lecturas de composición son correctas, el horno se cuela y el acero fundido se vierte en una olla de colada.
El proceso completo demora de cinco a ocho horas, mientras que el Horno de Oxígeno Básico produce la misma cantidad de acero en 45 minutos aproximadamente. Debido a esto, este horno ha sido virtualmente reemplazado por el de Oxígeno Básico.
Horno De Oxigeno Basico
Es un horno en forma de pera que puede producir una cantidad aproximadamente de 300 toneladas de acero en alrededor de 45 minutos.
El horno se inclina desde su posición vertical y se carga con chatarra de acero fría (cerca de un 25%) y luego con hierro derretido, después de ser devuelto a su posición vertical, se hace descender hacia la carga una lanza de oxígeno refrigerada por agua y se fuerza sobre ella un flujo de oxígeno puro a alta velocidad durante 20 minutos. Este actúa como fuente de calor y para la oxidación de las impurezas.
Tan pronto como el chorro de oxígeno comienza, se agrega la cal y otros materiales fundentes. La reacción
química resultante desarrolla una temperatura aproximada de 1.650º C. El oxígeno se combina con el exceso de carbono acabando como gas y se combina también con las impurezas para quemarlas rápidamente. Su residuo es absorbido por la capa flotante de escoria.
Después de haberse completado la inyección de oxígeno, se analiza el contenido de carbono y la composición química de diversas muestras de la masa fundida.
Cuando la composición es correcta, el horno se inclina para verter el acero fundido en una olla de colada.
Aunque se pueden producir algunos aceros de aleación con este proceso, el ciclo de tiempo aumenta considerablemente, eliminando así su ventaja principal. Consecuentemente, el proceso de oxígeno básico, como el del hogar abierto, se emplea generalmente para producir altos tonelajes de acero con un bajo nivel de carbono, que son los de mayor
consumo. Estos aceros con bajo nivel de carbono se utilizan para barras, perfiles y planchas gruesas y delgadas.
Horno De Arco Electrico
Es el más versátil de todos los hornos para fabricar acero. No solamente puede proporcionar altas temperaturas, hasta 1.930ºC, sino que también puede controlarse eléctricamente con un alto grado de precisión.
Debido a que no se emplea combustible alguno, no se introduce ningún tipo de impurezas. El resultado es un acero más limpio.
Consecuentemente, puede producir todo tipo de aceros, desde aceros con regular contenido de carbono hasta aceros de alta aleación, tales como aceros para herramientas, aceros inoxidables y aceros especiales para los cuales se emplea principalmente. Otras ventaja sobre el Horno de Oxígeno Básico es que puede operar con grandes cargas de chatarra y sin hierro fundido.
El Horno de Arco Eléctrico se carga con chatarra de acero cuidadosamente seleccionada. El arrabio fundido se emplea raramente. Si la carga de chatarra es muy baja en carbono, se agrega coque (el cual es casi puro carbono) o electrodos de carbono de desecho, para aumentar así su nivel.
Al aplicarse la corriente eléctrica, la formación del arco entre los electrodos gigantes produce un calor intenso. Cuando la carga se ha derretido completamente, se agregan dentro del horno cantidades medidas de los elementos de aleación requeridos.
La masa fundida resultante se calienta, permitiendo que se quemen las impurezas y que los elementos de aleación se mezclen completamente.
Para acelerar la remoción del carbono, el oxígeno gaseoso se introduce generalmente en forma directa dentro de acero fundido por medio de un tubo o lanza. El oxígeno quema el exceso de carbono y algunas de las impurezas, mientas otras se desprenden como escoria por la
acción de varios fundentes.
Cuando la composición química de la masa fundida cumple con las especificaciones, el horno se inclina para verter el acero fundido dentro de una olla de colada.
Este horno puede producir una hornada de acero en un período de dos a seis horas, dependiendo del horno individual.
Cromado
Es una técnica de protección contra la
corrosión que tiene muchas variantes y se puede aplicar al acero, aluminio, magnesio, y zinc. Esto resulta en la formación de óxidos metálicos en la superficie de la pieza de trabajo que reacciona para formar cromatos metálicos. El cromado de aluminio y magnesio mejora la resistencia a la corrosión considerablemente. Con el acero es mucho menos permanente.
Galvanizado
Es una técnica para protección contra la corrosión que se aplica solo a aceros suaves, hierro fundido y aleaciones de acero en donde las piezas de trabajo son sumergidas en zinc liquido a una temperatura de 500ºC. Se forma en la superficie de la pieza de trabajo una aleación de zinc/hierro dándole a la pieza una capa adherente de zinc.
Antes del galvanizado, la superficie del metal debe encontrarse en un estado moderado de limpieza. Esto se cumple generalmente por la limpieza ácida o blasteado ligero.
Las capas galvanizadas son de aproximadamente 0.005 pulgadas de grosor y pueden dar una protección por 10 o 20 años.

Nitrurizado
Es un proceso para endurecimiento de superficies utilizado solo en ciertos tipos de aceros, que resulta en una de las superficies más duras alcanzables por tratamientos con calor. El proceso consiste en mantener las piezas de trabajo en una atmósfera de amoniaco a 500ºC por un máximo de 100 horas. Bajo estas condiciones el nitrógeno atómico se combina con el hierro en la superficie para formar nitrato de hierro. El nitrógeno lentamente se difunde en la superficie siempre y cuando se mantenga la temperatura adecuada. Por lo que el grosor de la superficie endurecida resultante depende de la duración del tratamiento por calor.


10. Conclusiones

Es sin duda impresionante la manera en la que han evolucionado los materiales y lo importante que es conocer sus propiedades no tan solo físicas o mecánicas sino también a otro nivel como bien podría ser a nivel atómico ya que de esto depende en buena parte el comprender como habrá de comportarse un material en ciertas condiciones y de esa manera conjeturar algunas características como su dureza o su resistencia a algunos esfuerzos, la verdad este curso de Materiales ha resultado de mucho provecho para cada uno de nosotros los alumnos de ingenieria, hemos aprendido como conocer a los materiales por sus propiedades asi como por su tipo, sus estructuras internas y externas, que nos llevamos del curso?, conocimiento provechoso y una mayor conciencia de los materiales y su aprovechamiento a lo largo de este curso y a lo largo de la historia, conocer nuestro entorno es sumamente importante y poder aprovecharlo y modificarlo nos dara mayor comodidad y tambien una mayor economia en base al aprovechaniento que de el obtengamos, podemos sin lugar a dudas decir que los materiales forman una parte importante de la sociedad actual, a donde usted mire encontrara diversos materiales en sus miles de formas y modificaciones que el hombre, el ingeniero ha hecho con el unico propósito de sacar mayor ventaja y poder adaptar su medio a las circunstancias requeridas en su momento, la sociedad cambia y con ella sus necesidades de toda indole, la industria evoluciona constantemente al igual que la ciencia, gracias a estos cambios podemos ir adelantes y no ser victima de la estatica, hay cambios, hay dinamica, pero esto exije cambios, tan necesarios y grandes como se desen, quizas hasta se requira cambios sociales, cambios de actitud y quizas hasta cambios de estructuras economicas y gubernamentales. La industria a mejorado y progresado a pasos acelerados durante las ultimas tres decadas, el uso de los aceros y toda clasede metales se ha hecho mucho mas comun en las sociedades, la industrialización a exigido el uso de mas y mejores materiales para su desarrollo, hoy tenemos cubierta la mayoria de esas necesidades, pero falta mucho por recorrer, realmente no sabemos hacia donde la sociedad con sus industrias, su ciencia y su tecnología vayan, lo que si sabemos es que tenemos que ser concientes de los cambios y prepararnos para ellos, el afrontarlos adecuadamente, marcara la diferencia entre las economias fuertes, las debiles y las que deben perecer a causa de la mediocridad y la falta de actitud adecuada, podemos mirar hacia veinte años atrás y ver cuantos cambios al dia de hoy se han dado y como las industrias exitosas los afrontaron y como otros hoy ni su recuerdo queda; una actitud y las acciones adecuadas han permitido el desarrollo de tecnologías nuevas y en gran manera mucho mejores que las de hace tan solo diez o cinco años, el progreso nos arrastra y es mejor remar en el sentido que el se desarrolla para ser mejores, tambien no podemos estar a expensas de casar tecnologías, tenemos la obligación de desarrollarlas y sacar adelante a nuestro pais, su economia, no basta saber manejar la tecnología, sino ser padres de ella y poder sacarle el máximo de provecho, hoy es tiempo de contribuir y de mejorar, de lo contrario el resago nos atrapara y pagaremos caro una mala actitud, que en mucho pudimos corregir y que no estuvimos dispuestos. Ojalaesto sirva para visualizar, que un buen salario es bueno, pero aportar a este pais alguna idea, algun proyecto, algun invento; es todavía mucho mejor, el tiempo cambia, nosotros debemos hacerlo para bien de la comunidad y no tan solo para provecho personal, ojala pronto podamos reconocer la falta de una buena actitud y ser protagonistas en la tecnología, ser ser maestros y no aprendices.

Leonard A Quintero C
CAF